Cases: 20

Complete the last layer of the megaminx by permutating all the pieces. 

Use this set of algorithms to permutate the Last Layer of the Megaminx in two steps.  Most Megaminx solutions permute the last layer edges first, and then the corners. The reason is that the corners are easier to move individually, because a corner is the intersection of three turnable faces.

  1. Permute Edges
  2. Permute Corners

Megaminx Notation

 

MEGA CPLL 01
MEGA CPLL 01

(R' BR' R BR) (R' F' R BR') (R' BR F R)

MEGA CPLL 02
MEGA CPLL 02

(R' F' BR' R) (BR R' F R) (BR' R' BR R)

MEGA CPLL 03
MEGA CPLL 03

BR' (R' U L U') (R' U L' U') R2 BR

MEGA CPLL 04
MEGA CPLL 04

BR' R2' (U L U' R) (U L' U' R) BR

MEGA CPLL 05
MEGA CPLL 05

y L' (R U2 R' U') (R U R' U') (R U R' U') R U' R' L

MEGA CPLL 06
MEGA CPLL 06

(R U R' U) (R' U' R F') (R U R' U') (R' F R2 U') (R2' U R U')

MEGA CPLL 07
MEGA CPLL 07

R2 U R' U' y (R U R' U') (R U R' U') (R U R') y' R U' R2'

MEGA CPLL 08
MEGA CPLL 08

F (R U2 R' U' R U' R') F' R' y' (R' U' R U' R' U2 R BR) U'

MEGA CPLL 09
MEGA CPLL 09

[(R U R' U) (R' U' R2 U') (R' U R' U R) U] *2

MEGA CPLL 10
MEGA CPLL 10

R2 U2 R2' U' R2 U' R2' y' R2' U' R2 U' R2' U2 R2 U'

MEGA CPLL 11
MEGA CPLL 11

R2' U2' R2 U R2' U R2 y R2 U R2' U R2 U2' R2' U

MEGA CPLL 12
MEGA CPLL 12

R2 U2' R2' U' R2 U2' (R' U R' U') (R' F R2 U') (R' U' R U) R' F'

MEGA CPLL 13
MEGA CPLL 13

(R' U2 R U') (R' U2 R U2') (R' U' R U2') (R' U R U2') (R' U R)

MEGA CPLL 14
MEGA CPLL 14

(R2 U2' R2' U') (R2 U R2' U') (R2 U R2' U') (R2 U2' R2')

MEGA CPLL 15
MEGA CPLL 15

(R2 U2 R2' U) (R2 U' R2' U) (R2 U' R2' U) (R2 U2 R2')

MEGA EPLL 01
MEGA EPLL 01

R2 U2' R2' U' R2 U2' R2'

MEGA EPLL 02
MEGA EPLL 02

R2 U2 R2' U R2 U2 R2'

MEGA EPLL 03
MEGA EPLL 03

(R U R' F') (R U R' U') (R' F R2 U' R')

MEGA EPLL 04
MEGA EPLL 04

(R U R' U) (R' U' R2 U') (R' U R' U) R U2'

MEGA EPLL 05
MEGA EPLL 05

(L R U2) (L' U R') (L U' R U2) (L' U2 R')